Math 270: Differential Equations Day 11 Part 2

<u>Section 4.5</u>: The Superposition Principle and The Method of Undetermined Coefficients Revisited (Part 1) Section 4.5: The Superposition Principle and The Method of Undetermined Coefficients Revisited (Part 1)

• In the last section, we were trying to guess a particular solution y_p to the **non-homogeneous** 2^{nd} -order linear DEs w/constant coefficients ay'' + by' + cy = f(t) but the right side f(t) consisted of only one term?

Like: $y'' + 2y' + 5y = t^2 e^{3t} \sin t$

- What if f(t) has more than one term being added or subtracted together? Like: $y'' + 2y' + 5y = t^2 + e^{3t}$
- Or, what if f(t) has a constant in the front? Like: $4y'' + 2y' + 5y = 5 \sin t$
- Or, what if f(t) has addition or subtraction and constants in the front? Like: $4y'' + 2y' + 5y = 3e^t - 2\sin t$

Section 4.5: The Superposition Principle and The Method of Undetermined Coefficients Revisited (Part 1)

The Superposition Principle

- 1) If y_1 is a solution to $ay'' + by' + cy = f_1(t)$ and y_2 is a solution to $ay'' + by' + cy = f_2(t)$ then $y_1 + y_2$ is a solution to $ay'' + by' + cy = f_1(t) + f_2(t)$
- 2) If y_1 is a solution to $ay'' + by' + cy = f_1(t)$ and k is a constant then ky_1 is a solution to $ay'' + by' + cy = kf_1(t)$
- 3) If y_1 is a solution to $ay'' + by' + cy = f_1(t)$ and y_2 is a solution to $ay'' + by' + cy = f_2(t)$ and k_1 and k_2 are constants then $k_1y_1 + k_2y_2$ is a solution to $ay'' + by' + cy = k_1f_1(t) + k_2f_2(t)$

<u>Section 4.5</u>: The Superposition Principle and The Method of Undetermined Coefficients Revisited (Part 1)

The Superposition Principle

Superposition Principle

Theorem 3. If y_1 is a solution to the differential equation

 $ay'' + by' + cy = f_1(t) ,$

and y_2 is a solution to

 $ay'' + by' + cy = f_2(t) ,$

then for any constants k_1 and k_2 , the function $k_1y_1 + k_2y_2$ is a solution to the differential equation

 $ay'' + by' + cy = k_1 f_1(t) + k_2 f_2(t)$.

Section 4.5: The Superposition Principle and The Method of Undetermined Coefficients Revisited (Part 1)

Example 1 Find a particular solution to

(1) $y'' + 3y' + 2y = 3t + 10e^{3t}$ and (2) $y'' + 3y' + 2y = -9t + 20e^{3t}$.

Section 4.5: The Superposition Principle and The Method of Undetermined Coefficients Revisited (Part 1) Example 2 Given that $y_p(t) = t^2$ is a particular solution to $y'' - y = 2 - t^2$, find a general solution and a solution satisfying y(0) = 1, y'(0) = 0. <u>Section 4.5</u>: The Superposition Principle and The Method of Undetermined Coefficients Revisited (Part 1) **Example 4** Find a particular solution to $y'' - y = 8te^t + 2e^t$.